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Dispersions of glassy polymers are characterized by a wide distribution of relaxation or retarda
tion times, similarly to the main transition from glassy to rubbery state. If the relaxation time, 
T, is expressed in the standard form, that is, T = TO exp (U/R T), it can be seen that the distribu
tion of relaxation times, G(T), can generally be a consequence (cf 1- 3) of the distribution of the 
pre-exponential factor, TO' or activation energies, U, or else a consequence of the combination 
of both these distributions (R being the gas constant and T being absolute temperature). For the 
main transition region, the applicability of the time-temperature superposition is a characteristic 
feature, which means (cf4) that TO is the distributed quantity. From the viewpoint of the con
ventional theory of thermally activated rate processes, activation entropyS is therefore the distri
buted term (in the notation used this term is comprised in TO)' Lately, an attempt6 has been made 
at a phenomenological description, which considers the distribution of activation energies in the 
main transition region; however, this alternative approach has not yet been verified in a more 
general manner. 

Dispersions of polymers in the glassy state are generally characterized by changes in the shape 
of frequency (time) dependences of both components of the complex modulus of elasticity due 
to a change in temperature, so that the ordinary time-temperature superposition cannot be used. 
Different temperature dependences of the individual relaxation times indicate that the activation 
energy is a distributed term. At the same time, for relaxation motions of short segments 7 ,8 or side 
chains9

, TO can be regarded as a temperature-independent constant. This assumption, i.e. the same 
values of TO for all T, has been applied in our earlier work10, in which isochronal temperature 
dependences of the components of the complex modulus of elasticity were used to calculate the 
activation energies, U, and distribution parameters, Q, of the Fuoss-Kirkwood equationll 

for the low-temperature dispersion of poly(2-hydroxyethyl methacrylate) and its homologues. 
The U and Q values thus obtained are in good correspondence with those following from iso-

. thermal dielectric measurements, so that, in the first approximation, TO can be considered a con
stant, and the distribution of the relaxation times T can be assigned to the distribution of the acti
vation energies E(U). It has been an objective of the present work to determine the distribution 
E(U) which would correspond to the previously caicuiated10 parameter Q and its temperature 
dependence. 

RESULTS AND DISCUSSION 

The use of the Fuoss-Kirkwood equationll in the description of the relaxation processes means 
that the corresponding distribution function of the relaxation times has the form 

F(s) = (Q/n) cos (nQ/2) cosh (Qs)/[cos2 (nQ/2) + sinh2 (Qs)] , (I) 

in which s = In (T/Trn), Trn = TO exp (Urn/RT) being the most frequent relaxation time, for 
which the loss modulus assumes its highest value, G~. To calculate the distribution E(U) from 
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the distribution F(s), the variable s must be expressed in terms of the activation energies (ei 2
•
s) 

F(s) ds = {FI(U - Um)/RT1/RT} dU = E(U) dU. (2) 

It can be seen from Eqs (1) and (2) that for T = const., and thus also Q = const., the distribution 
functions F(s), resp. E(U) are symmetrica l around the most frequent values of 'm' resp. Um' 
These distributions are the broader the lower the parameter Q (0 < Q;;;; 1). In the case of isothermal 
measurements the loss modulus attains the value of G%, at a frequency liJm = l/'m' so that, 
if Arrhenius' relationship is used , the activation energy will be equal to U m' 

An example of the calculation of E(U) has been carried out for the low-temperature dispersion 
of poly(2-hydroxyethyl methacrylate). We have established in an earlier work lO that the temper
ature dependence of the distribution parameter can approximately be described in terms of a single 
empirical relationship Q = KI + K2 T, in which K\, K2 are constants . After substitution in Eq. 
(1), the following expression is obtained for the distribution of the activation energies: 
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FIG. 1 

Distribution of the Activation Energies E( U) 
of the Low-Temperature Dispersion of Poly 
(2-hydroxyethyl methacrylate) at Temperatu
res 100 (ct), 150 ( 0 ), and 200 K (e) 

a Kl = ......:0·11, K2 = 1·91 .10- 3 J(-1; 

b KI = 0, K2 = 1'16.10- 3 K- 1
; c Kl = 

= 0'169, K2 = O. 
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It is clea r from Eq . (3) that the distribution E(U) will always more or less vary with temperature 
according to the values which the constants K l ' K2 assume. We shall calculate the distribution 
E( U) for three different temperature dependences of the parameter Q(T). K1 = - 0·11 and K2 = 
= 1·91 .10- 3 K- 1 were found to be the mean constant values for the low-temperature 
dispersion of poly(2-hydroxyethyl methacrylate)lO. (For the dispersion tempera ture Toy = 146 K , 
Qoy = 0'169). In some cases, for instance if K 1 is subject to a comparably large error, thus losing 
its justification, the relationshiplO Q = K2 T is sufficient to describe the temperature dependence 
of the parameter Q. At the same time, it can be seen from Eq. (3) that for values Kl near zero, 
the changes in E(U) with temperature will be minimum. We therefore chose as another example 
the values K 1 = 0 and K2 = 1·16 . 10 - 3 K -1 , which lead - for temperature Toy - also 
to Qy = 0·169. While treating the results of isochronal measurements in an earlier paper12, we 
used a simplifying assumption, viz. that the parameter Q is temperature-independent; we therefore 
chose Q = Kl = 0·169 (K2 = 0) as the third example. For all three cases described above, 
the distribution E(U) was calculated in dependence on t..U = U - Urn (Um is approximately 
equallO to 11 kcal / mol), the temperatures being 100,150, and 200 K (Fig. I). Large temperature 
differences (approximately Toy ± 50 K) were chosen in order to stress the possible changes of the 
distribution E( U) with temperature. 

The K1 and K2 values, determined in an earlier work10
, lead to a conclusion that the distribu

tion of activation energies E(U), corresponding to the low-temperature dispersion of poly(2-
hydroxyethyl methacrylate), either - does not virtually change with temperature (Fig. Ib), or 
becomes narrower with increasing temperature (Fig. la). This result is consistent with the findings 
acquired to date3 ,13, that an increase in the internal mobility with temperature has a trend 
of depressing the differences between the conditions of motions of the individual kinetic units. 
On the contrary, a simplifying assumption that Q is temperature-independent is not suitable 
in the case of the distribution G(r) resulting from the distribution E(U), since it would mean, 
as a consequence, that the distribution G(r) would considerably (and in a defined manner) be 
extended with temperature, which, however, is at variance with the experimental results. 
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